

Deliverable 6.1.1

Project Title Next-Generation Hybrid Broadcast Broadband

Project Acronym HBB-NEXT

Call Identifier FP7-ICT-2011-7

Starting Date 01.10.2011

End Date 31.03.2014

Contract no. 287848

Deliverable no. 6.1.1

Deliverable Name Initial Version of the HBB-NEXT System Architecture

Work package 6

Nature Report

Dissemination Public

Author Eugen Mikoczy (ST), Michael Probst (IRT)

Contributors Stefan Heller (TARA), Sachin Agarwal, Felix Gomez
Marmol, Gines Dolera (NEC), Ray van Brandenburg
(TNO), Gregor Rozinaj, Pavol Podhradsky, Ivan Kotuliak
(STUBA), Sebastian Schumann (ST), Janina Renz, Mark
Gülbahar (IRT)

Due Date 31.06.12

Actual Delivery Date 11.07.12

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 2

Table of Contents

1. Executive Summary ... 4
2. Introduction .. 5
3. Architecture Principles and Methodology ... 10
3.1. Architecture Design Principles .. 10
3.2. Documentation Methodology and Tools .. 10
3.2.1. UML and Enterprise Architect ... 10
3.2.2. RESTful API Definition and Documentation .. 11
4. Technical Requirements ... 13
4.1. System and Network ... 14
4.2. Services and Applications .. 14
4.3. Terminal Devices ... 17
5. HBB-NEXT High Level Architecture.. 19
5.1. Domain Model ... 20
6. HBB-NEXT Detailed Architecture .. 22
6.1. Logical Architecture ... 22
6.2. Physical Distribution .. 26
6.3. Detailed Module Descriptions ... 26
6.3.1. Personalization Engine .. 26
6.3.1.1. Interfaces, Protocolsand API ... 27

6.3.2. Recommendation Engine .. 28
6.3.2.1. Module Internal Structure and Interfaces... 28

6.3.2.2. Module External Interfaces and APIs .. 29

6.3.2.3. Hardware and Software Components ... 32

6.3.2.4. Prototype Description ... 32

6.3.2.5. Interaction and Integration with other Modules .. 32

6.3.3. Notification Service ... 32
6.3.4. Identity Management .. 32
6.3.4.1. Interfaces, Protocols and API .. 33

6.3.5. Profile Management .. 36
6.3.5.1. Interfaces, Protocols and API .. 36

6.3.6. Multi-Modal User Interface ... 37
6.3.6.1. Module Internal Structure ... 38

6.3.6.2. Module External Interfaces and APIs .. 39

6.3.6.3. Hardware and Software Components ... 42

6.3.7. A/V Content Synchronisation .. 42
6.3.7.1. Module Internal Structure ... 42

6.3.7.2. Module External Interfaces and APIs .. 43

6.3.7.3. Hardware and Software Components ... 43

6.3.7.4. DVB Playout Server .. 44

6.3.7.5. IP Streaming Server ... 44

6.3.7.6. Interaction and Integration with other Modules .. 46

6.3.8. Application trust .. 46

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 3

6.3.8.1. Representing Recommendations .. 46

6.3.8.2. Aggregating Recommendations .. 47

6.3.8.3. Providing Feedback ... 47

6.3.8.4. Proposed Architecture .. 48

6.3.8.5. Functionality .. 49

6.3.9. Application, TV Apps Management, Service Discovery ... 50
6.3.10. Multi-Screen Support, Device Monitoring, Device Capabilities .. 50
6.3.11. EPG metadata repository .. 50
6.3.11.1. Interaction and Integration with other Modules .. 51

6.3.12. Terminal Identity and Trust Management .. 51
6.3.13. Cloud Offloading and Media Adaptation .. 52
6.3.13.1. Proposed Architecture .. 53

6.3.13.2. Media Adaptation .. 55

6.3.14. HBB-NEXT Terminal Devices .. 56
6.3.15. Security Manager .. 58
7. Conclusion and Outlook ... 61
8. References .. 62
9. Abbrevations ... 65
9.1. General abbrevations .. 65
9.2. HBB-NEXT abbreviations ... 66

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 4

1. Executive Summary

This document presents the initial version of the HBB-NEXT system architecture as well as

the architecture of the service enablers modules delivered from WP3, WP4 and WP5.

Section 2 explains the background and the relationship to other HBB-NEXT activities and

deliverables and also demonstrates the role of the system architecture. Furthermore, it

highlights the technical needs and benefits of a standard based on open technologies that

HBB-NEXT plans to follow.

Section 3 provides guidance how the architectural elements are documented and which

methodologies and tools were used.

In section 4 the first set of technical requirements is listed which have been derived from

the functional requirements defined in D2.2 [5]. These minimal mandatory requirements

are split into several groups such as system, service, terminal and security.

The high level architecture is presented in section 5 providing an overview about the

services and features of an HBB-NEXT system as well as the domain model and scenarios of

service delivery. Additionally, a summary of the high-level view on service

enablers/modules and their interaction and high level procedures is presented.

In section 6 the detailed logical and physical architecture is described as well as the design

of selected modules.

This document is concluded by section 7 which draws a conclusion from this version of the

document and describes the plans for the next version for next milestones defined for the

series of the follow up deliverables in WP6.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 5

2. Introduction

Within this document the HBB-NEXT system architecture is described in several phases of

designing of system architecture and HBB-NEXT framework development. The initial version

of document D6.1.1 focuses on a first version of the architecture where a high level

architecture and description of service enablers/module for initial prototypes is provided

(which some of them will be part of the initial system setup). In next versions (D6.1.2 and D

6.1.3) of this document we will provide more information on how to integrate the different

modules as well as how to develop application on top of framework application.

As mentioned in the project proposal HBB-NEXT intends to develop an application

framework that can provide defined service enablers over modular distributed and open

architecture.

The need for defining well-described interfaces to achieve interoperability has been

identified. Interfaces can be divided into external and internal ones. Especially external one

interface towards application developer and second one towards end terminal are essential

to design open system. Such a well specified and open interfaces then enable to external

parties like application developer, 3rd party service providers to easier develop HBB

applications that any device with standardized browser can access them.

Several architectures and technologies used these days with hybrid broadcast broadband

applications have been analysed. In the past, there have been several activities that try to

focus only on standardising the end device and the browser environment like Multimedia

Home Platform (MHP) [32] and OpenTV [33]. Last few years since introduction of HbbTV 1.0

[1] showed the importance of an open development environment and well specified rules

how application can be developed, as this could better help to industry and developers to

accept and adapt these HBB standards.

It is therefore the goal of HBB-NEXT to work towards a standard based open solution.

Though in the industry proprietary solutions are still used in parallel especially by over the

top players for specific services to achieve global interoperability standardization is

important.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 6

Using open and standardized technologies can extend potential interoperability (terminal to

platform, application to platform/terminal) making it more relevant and attractive for the

market. With a standardized solution it is also expected to have on one hand a more cost

effective implementation as development cost can be shared by multiple deployment and

on the other hand be more attractive for developers because of a wider potential market

(more terminals/users).

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 7

The HbbTV 1.0 standard is based on CE-HTML [2] but there is a trend to introduce HTML5

[3] in the near future, most probably also for the next release of HbbTV [1]. Generally,

standard web technologies are also used in connected devices and multi-screen platforms.

There are several potential deployment models of HBB services, some of them described in

D.2.4 [4], depending if hybrid services are delivered by over the top players purely via

internet, Telco operators delivered all services over managed networks, or HBB providers

that combine broadcast with broadband delivery (see Figure 1).

Figure 1: Differences in deployment models

The HBB-NEXT architecture will be designed independently of the deployment models so

that HBB-NEXT platforms and service enablers can be used as a framework or selected

modules individually, depending on the specific needs of application and service providers.

Therefore, HBB-NEXT plans to provide well-defined APIs to application developers or 3rd

party service providers.

The architecture design follows the service oriented architecture (SOA) principles with

interoperable service enabler modules that can work independently from other modules.

This approach gives great flexibility for deployment of just those modules that are necessary

for particular applications or HBB-NEXT provider (see Figure 2).

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 8

The term “HBB-NEXT provider” includes broadcaster, content, service and application

provider as well. More details about the domain model and deployment scenarios are

described in section 0.

Figure 2: Flexible deployment model based on HBB-NEXT framework

This layered and open architecture for HBB applications can be understood as an enabling

platform (see Figure 3) for next generation HBB applications and new application scenarios.

Instead of focusing on internal interfaces HBB-NEXT makes use of standardized APIs for

application developers. Terminal interoperability can be achieved by using same standard

based technologies like those specified in the upcoming HTML5 [3] specification, a future

HbbTV 2.0 specification and the ETSI MCD Converged Multi-screen Service specification.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 9

HBB-NEXT will contribute APIs and requirements needed additionally to standardization

bodies within the HBB-NEXT WP7. Further information about planned standardization

contributions can be found in HBB-NEXT D7.2 [6].

Figure 3: Principle architecture and role of APIs

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 10

3. Architecture Principles and Methodology

In this chapter the approach of defining the high level and detailed architecture for this

document is described. The second part of this chapter introduces the methodology used

for generating the documentation.

3.1. Architecture Design Principles

The architecture work of WP6 is based on prior work in WP2 on scenarios, use cases and

functional requirements and first input on the detailed architecture for enablers fromWP3,

WP4 and WP5.

WP6 asked WP3, WP4, and WP5 to provide for each of their enablers a set of technical

requirements and a set of (software) modules including external interfaces. The technical

requirements shall complement the functional requirements defined in deliverable D2.2 [5]

and can be found in chapter 4.

Based on the input from the other WPs an integrated architecture of the HBB-NEXT

framework has been developed. This includes high level software components and their

external interfaces, i.e. APIs and protocols. Chapter 5 provides a high level view of the

architecture while chapter 6.3 describes the components in more details.

Chapter 5.1 introduces a domain model showing how the enablers of the HBB-NEXT

framework can be distributed to different service provider domains thus enabling the

business models described in HBB-NEXT deliverable D2.4 [4].

3.2. Documentation Methodology and Tools

3.2.1. UML and Enterprise Architect

For documenting the system architecture HBB-NEXT has chosen the Unified Modelling

Language (UML). UML [23] provides a set of tools (i.e. diagram types) for presenting

different views on a system. The documentation of the HBB-NEXT system architecture uses

UML diagrams where it is appropriate.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 11

Component or class diagrams are used to illustrate the relation between the software

modules and the provided and used external interfaces. Sequence diagrams show how the

interfaces of modules are used and how the modules interact with others in a timely

manner, i.e. the diagram provides a sequence of API calls an application is usually doing.

HBB-NEXT decided to use a common tool (Enterprise Architect) for defining the UML

models of the system architecture. The tool allows the sharing of all models on a central

repository. The diagrams shown in this document are exported from there.

3.2.2. RESTful API Definition and Documentation

HBB-NEXT agreed to define APIs of web services which are used by applications as so-called

RESTful APIs. REST [22] is a concept without providing a unified documentation tool like

SOAP XML. Therefore this chapter provides a set of guidelines and conventions.

Note: When a web browser is used to run applications using a RESTful API as proposed by

this chapter, it requires that the browser and the web server implement cross origin

resource sharing (CORS) [24], that the browser implements HTML 5 web messaging [25],

HTML 5 web sockets [26], or a proxy is installed at the application server to allow API calls

though the same origin policy.

Usage of HTTP Methods

HTTP Method Usage

GET To retrieve information of an object or a resource provided by the web
service. The use of this method should not change the state of any
resource of the web service.

POST To create a new object or resource available through the web service.

PUT To update an object or resource of the web service.

DELETE To delete a resource.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 12

Resources

An HTTP resource is a hierarchical structure defined by a path name, i.e. levels separated by

the slash character, for example /level1/level2. In principle the construction of the resource

name depends on the module though following restrictions should apply:

 The first level should identify the module/component, e.g. “/RecEng”.

 The second level may identify the version of the API of the module, e.g.

“/RecEng/2.0”. The web service should provide the latest version of the API with

a level called “latest”.

Content Format

A web service should offer responses in the JSON (java script object notation) format.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 13

4. Technical Requirements

This chapter presents the first set of technical requirements for specifying the HBB-NEXT

prototype. At this early stage they are referring to the planned prototype applications for

each enabler. Those applications will be independent of each other and adaptation might

be necessary when building the one integrated prototype at a later stage. Therefore, it is

very likely that technical requirements have to be revised and extended in upcoming

versions of this document.

A structured approach has been carried out for generating this first set of technical

requirements:

 At first, WP3, WP4 and WP5 were asked to provide first technical requirements

which are relevant for their planned prototype applications.

 After collecting the requirements they were grouped and consolidated in one

spread sheet.

 A first cross-check between the technical requirements and the mandatory

functional/system/user requirements of D2.2 [5] was carried out for identifying

missing technical requirements, particularly for non-enabler related ones.

 One review/feedback loop was carried out.

 The mandatory (shall) requirements for the current stage were copied from the

spread sheet into this document.

The technical requirements are grouped by the main building blocks of the current HBB-

NEXT system architecture. These major architectural categories are:

 01: System and Network

 02: Services and Applications

 03: Terminal Devices

The description of a requirement must contain one of the following terms to define the

prioritization of the requirement: “shall”, “should”, “may”. The definition of these terms has

been adopted from IETF RFC 2119 [7].

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 14

The formatting of the technical requirements basically follows the same principles as used

for the functional/system/user requirements of D2.2 [5]. In this case each requirement is of

type TR (= Technical Requirement) and attributed to one of the architectural categories.

The following numbering scheme will be used: TR.[CATEGORY].[REQ NUMBER]

In the next version of this document it is planned to assign a unique number to each

technical requirement.

4.1. System and Network

Description Related Enabler WP

The server executing the engines (e.g recommendation engine
and Group Context Server) shall be able to run Java / REST
applications.

Not enabler related -

A service SHALL be available in the network for managing user
profiles.

IDM 3, 5

4.2. Services and Applications

Description Related Enabler WP

An HBB-NEXT application's user interface SHALL use clear
language, comprehensible to a broad audience, e.g. not using
“AES”, or “256-bit”.

Not enabler related -

The app-store SHALL have enough computation resources to
execute the trust and reputation model in use within a
reasonable time-frame.

Application Trust 3

The app-store SHALL have enough resources to store and
provide HBB applications to the end-users.

Not enabler related -

The app-store SHALL be accessible from the public Internet,
which means that it should be connected via IP to the public
Internet.

Application Trust 3

The cloud SHALL provide a method to decode an incoming
MPEG transport stream into raw video (at least SDTV
resolution) and raw audio.

Cloud offloading 4

The cloud SHALL provide a method to reduce the resolution of
a higher resolution video to a lower resolution video (at least
SDTV resolution) and reduce the audio stream bitrate if
needed.

Cloud offloading 4

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 15

Description Related Enabler WP

The cloud SHALL provide a method to encode raw video into
WebM-encoded video (at least SDTV resolution) and encode
raw audio into Ogg-encoded audio.

Cloud offloading 4

The cloud SHALL provide a method to multiplex multiple
elementary streams into at least one standard container
format e.g. WebM (at least 1 video and 1 audio stream).

Cloud offloading 4

The cloud SHALL provide a method to mix two raw video
streams in order to achieve a picture-in-picture overlay effect.

Cloud offloading 4

The cloud SHALL provide a method to start more worker
machines for media processing, based on processing demand.

Cloud offloading 4

The cloud SHALL provide a method to stop one or more
worker machines for media processing based on processing
demand.

Cloud offloading 4

The cloud SHALL provide an interface to receive a MPEG-TS
stream (at least via HTTP interface).

Cloud offloading 4

The cloud SHALL provide an interface to transmit a HTTP
media stream suitable for playback in a web browser (at least
on a PC and a mobile device/tablet).

Cloud offloading 4

The cloud shall provide a programming interface to provision
more worker machines when required. The decision of when
to start/stop worker machines will be automatic.

Cloud offloading 4

The cloud shall provide the ability to detect client web
browser capabilities (e.g native webm support) of JavaScript-
enabled browsers.

Cloud offloading 4

The cloud SHALL provide the ability to store cloud-offloading
applications (At least gStreamer pipelines) in a database in the
cloud.

Cloud offloading 4

The cloud SHALL provide the ability to use browser capability
information to make decisions of how to assist the HBB-Next
application via processing/storage offloading capabilities in
cloud(at least 1 application example).

Cloud offloading 4

The cloud SHALL provide the ability to overlay an image (at
least in SVG format) over a raw video supported in the cloud.

Cloud offloading 4

The cloud SHALL provide the ability to monitor the
applications running in the cloud and report resource usage
via a web interface.

Cloud offloading 4

The cloud SHALL be able to ascertain the resource
requirement of a media process up to a confidence level based
on its description.

Cloud offloading 4

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 16

Description Related Enabler WP

The cloud SHALL be able to start media processes (At least
gStreamer pipelines) on the underlying worker machine
infrastructure on demand.

Cloud offloading 4

The cloud shall be able to stop media processes (At least
gStreamer pipelines) on the underlying worker machine
infrastructure.

Cloud offloading 4

The cloud SHALL be able to expose media process output via
standard interfaces.

Cloud offloading 4

The cloud SHALL be able to import media from the processes
via standard interfaces.

Cloud offloading 4

The security manager SHALL have an interface for policy
enforcement settings (interface for administration).

Security
Management

3

The security manager SHALL have persistent relation to
Identity Management.

Security
Management

3

The security manager SHALL be resistant to DoS attack. Security
Management

3

The security manager SHALL be able to enforce different roles
of a user towards a service.

Security
Management

3

The profile manager SHALL have a database for user profiles. IDM 3

Identity Management SHALL have database for user data, user
devices and relations.

IDM 3

The identity management SHALL be able to subscribe to
changes in a context via a notification framework.

IDM 3

The identity management SHALL provide an interface to list
active users on a device.

IDM 3

The identity management SHALL provide an interface to
modify users in a certain context.

IDM 3

The identity management SHALL provide an interface that
provides a subset of users that are relevant for multi-modal
interface interaction, i.e., a subset of user identifiers (e.g.
faces) that are usually connecting in the context.

IDM 3

The identity management SHALL provide an interface to
retrieve all users, who are active in a certain context, i.e., who
are relevant for context-based operations (e.g. multi-modal
recognition, personalization).

IDM 3

The identity management SHALL provide an interface to set
users as 'active' in a certain context.

IDM 3

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 17

Description Related Enabler WP

The identity management SHALL provide an interface to
retrieve full or partial information that is relevant for
identifying the user using the multi-modal interface (e.g.
multi-modal vectors).

IDM 3

The profile management SHALL provide an interface by which
the user’s profile can be managed (retrieved, modified,
extended and deleted).

IDM 3

The profile management SHALL provide an interface by which
the user’s profile parameters can be retrieved or set.

IDM 3

The identity management SHALL provide a method that
returns a parameter from the identity profile.

IDM 3

The identity management SHALL provide an interface to
manage users and the devices they use to access the
framework or applications.

IDM 3

The identity management SHALL provide an interface to
manage different roles of a user towards a service.

IDM 3

The identity management SHALL provide an interface to
manage relations between users, between devices, and
between users and devices.

IDM 3

The identity management SHALL provide an interface to
manage the relation between a user and a service.

IDM 3

The personalization engine SHALL provide an interface to read,
write, and manage the profile of a group.

Personalization
Engine

5

4.3. Terminal Devices

Description Related Enabler WP

A terminal device SHALL be compliant to HbbTV V1.0 [1] Not enabler related -

It SHALL be possible to query the capabilities of a terminal
device via the network.

Not enabler related -

The terminal device SHALL provide a user interface for
controlling the connection to other devices.

Not enabler related -

A terminal device SHALL register itself at an 'identity server'
and frequently refresh the status showing its availability in the
network.

 6

The terminal SHALL have a microphone array. Multi-Modal User
Ident., Multi-User
Pers. Engine

3, 5

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 18

Description Related Enabler WP

The terminal SHALL have a camera. Multi-Modal User
Ident., Multi-User
Pers. Engine

3, 5

The terminal SHALL have sufficient power for image and voice
processing within multimodal interface.

Multi-Modal User
Ident., Multi-User
Pers. Engine

3, 5

The client device (STB/PC) shall have a way to extract PCR
values from an MPEG-TS stream.

A/V Sync 4, 6

The client device (STB/PC) shall have a method to extract per-
frame PTS/DTS values from an MPEG-TS stream.

A/V Sync 4, 6

The client device (STB/PC) shall be able to access private data
sections in an MPEG-TS stream.

A/V Sync 4, 6

The client-device (STB/PC) shall be able to support decoding
and playout of at least 2 simultaneous video streams.

A/V Sync 4, 6

The client-device (STB/PC) shall be able to receive, demultiplex
and decode a MPEG-TS stream received over the broadcast
interface.

A/V Sync 4, 6

The client-device (STB/PC) shall be able to receive and/or
request an MPEG DASH or HTTP Live Streaming (HLS) stream.

A/V Sync 4, 6

The client-device (STB/PC) shall be able to communicate with
an external server via HTTP.

A/V Sync 4, 6

The client-device (STB/PC) shall be able to control playout
timing accurately (frame-accurate).

A/V Sync 4, 6

The second-screen device (tablet/smartphone) shall be able to
receive and/or request and MPEG DASH or HTTP Live
Streaming (HLS) stream.

A/V Sync 4, 6

The second-screen device (tablet/smartphone) shall be able to
control playout timing accurately (frame-accurate).

A/V Sync 4, 6

The second-screen device (tablet/smartphone) shall be able to
communicate with an external server via HTTP.

A/V Sync 4, 6

The client-device (STB/PC) shall contain a (configurable) NTP
client.

A/V Sync 4, 6

The client-device (STB/PC) shall be able to synchronously
playout media streams obtained through different
technologies (e.g. a DVB broadcast stream and an MPEG DASH
broadband stream)

A/V Sync 4, 6

The client-device (STB/PC) and second-screen device
(tablet/smartphone) shall be able to synchronize their playout.

A/V Sync 4, 6

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 19

5. HBB-NEXT High Level Architecture

This chapter explains the HBB-NEXT system architecture from a high level view. The next

section describes how the service scenarios and use cases are mapped to the enablers of

the HBB-NEXT framework. In section 0 a generic domain model is introduced for showing

the relation of HBB-NEXT business models to the system architecture.

Figure 4 gives an overview of the HBB-NEXT high level system architecture. The core of the

architecture is the set of enablers which build the HBB-NEXT Framework. The HBB-NEXT

applications make use of the framework to provide new type of services to the consumer

over broadcast and broadband networks. The range of consumer devices consists of

traditional TV sets and popular personal devices like Tablet PCs and Smart Phones.

Figure 4: HBB-NEXT high level architecture

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 20

5.1. Domain Model

The domain model in this chapter is a generalization from the business models described in

D2.4 [4]. They show the main business roles and the services which they offer and consume.

The domain models shall help to understand the impact of the different business models on

the HBB-NEXT architecture.

Figure 5: Generic HBB-NEXT domain model

Business Role Description

Broadcaster Offers live TV services to the consumer over a broadcast network.
Offering hybrid broadcast broadband services to the consumer,
would combine the broadcaster role with the application-provider
role.

HBB-NEXT Application
Provider

The application provider offers content-related applications to the
consumer over a broadband or broadcast network. He makes use
of the services of the HBB-NEXT service providers. Examples of
HBB-NEXT services offered by an application provider are
recommendation services and sign language services.

Depending on the business models the application provider might
be a broadcaster, a 3rd party enriching broadcast services, etc.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 21

Business Role Description

HBB-NEXT Service
Provider

Provides services of the HBB-NEXT framework to the consumer,
broadcaster and/or application provider.

HBB-NEXT has identified the following service providers in D2.4:

 Media Cloud Service Provider

 Identity Provider

 Application Trust Provider

 Rich Media Provider

 Multimodal I/F Hardware Vendor

 Group Recommendation Provider

A single service provider can take either one or all multiple of
these roles.

Consumer The consumer domain consists of the user(s) who consumes the
content and all of his devices. The consumer role has one or more
HBB-NEXT enabled terminals that include some of the enablers of
the HBB-NEXT framework, those services can be used by the
application provider:

A/V content synchronization

Identity of its user (for horizontal markets)

Examples how multiple HBB-NEXT service providers can cooperate are given in D2.4 [4].

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 22

6. HBB-NEXT Detailed Architecture

This chapter documents the detailed HBB-NEXT system architecture by identifying and

describing the software modules which are realized in the HBB-NEXT framework.

Chapter 6.1 gives an overview of the modules and their relations. In chapter Fehler!

Verweisquelle konnte nicht gefunden werden. the physical distribution of the components

is shown.

In chapter 6.3 a description of each module is included, giving first a functional overview

and providing the detailed information like APIs, software and hardware requirements.

6.1. Logical Architecture

Figure 6 shows the components (i.e. software modules) which construct the HBB-NEXT

framework. Each module is placed in one out of three domains: Application provider,

service provider and terminal. If a module is located in the terminal domain, it means that it

is installed on or part of the user’s terminal device. Modules in the service provider domain

are located at the service provider side including broadcasters, and be accessed either via a

broadcast or broadband network. Applications run on the terminal devices, e.g. as

HTML/JavaScript pages, using services provided in the network from the application

provider (backend) and other service providers.

The diagram is a UML component model including interfaces between the components

using the assembly connector. The connector bridges between a component which provides

an interface – the full circle – and another component which requires or uses that interface

– half of a circle. The colour of a component shows which work package of HBB-NEXT is

responsible for developing the software for it. Please refer to the legend in the diagram. The

subsequent table describes each component and gives a direct link to the chapter of the

detailed component description.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 23

Figure 6: Components of the HBB-NEXT architecture

 cmp Detailed Architecture

Terminal

Service Provider

Application Provider

Identity Management

Profile Manager Security Management

MM identification -

SP

MM identification -

terminal

Trust & Reputation - AP

Trust & Reputation - SP

Application (Frontend)

AV Sync - 3rd Party

AV Sync - Broadcaster

AV Sync - Terminal

CloudOffloading

MM Interface -

Terminal

Personalization Engine

Recommendation

Engine

NotificationServ ice

TV Portal

WP3

WP4

WP5

WP6

Other

Legend

Dev ice Capability

Prov ider - terminal

EPG Metadata

Repository

Mobile Dev ice

Terminal

Terminal Identity

Management

Terminal Trust

Management Serv ice Discov ery

Client

Application (Backend)

Application Portal

Dev ice Capability

Prov ider - mobile

IPSource

DVBSource IPSource

DVBSource, IPSource

IdM

Trust&Rep

ManageApps

Composed

Media

Source

Trust&Rep

GroupContext

ManageProfiles

IdM

MapProfileUser

MapProfileUser

Trust&Rep

MMI

MMI

TrustRep

IdM

subEvt

RcvEvt

SubEvtRcvEvt

SubEvt

RcvEvt

GetRec

UserContext

UserContext

GroupProfile

GroupProfile

TerminalAPI,

MobileAPI

TerminalAPI

MobileAPI

IPSvcDsc,

BCSvcDsc

IPSvcDsc

AppServer

AppMgt

EPG

user identified

user joined/user left

user joined

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 24

WP3 - Module Description Chapter

Profile Manager Stores the user profile including user-
service relations and information of
services and applications.

6.3.5

Identity
Management

Provides identity information of users and
their devices. It stores user/device and
user/user relations.

6.3.3

Security Manager Enables application and service
authorization.

Allows authentication of users.

Provides user identity information.

6.3.15

Multi-model
Identification

Enables single- and multi-user
identification

by using cameras, microphones, etc.

6.3.6

Trust & Reputation Collects feedback from users about
applications. Computes the reputation of
an application based on the feedback.
Provides reputation information to
application portals, etc..

6.3.8

WP4 - Module Description Chapter

AV Sync –
Broadcaster

Delivers content on DVB and IP networks

Delivers single service components of DVB
services over IP

Signalling for IP content to DVB delivery

6.3.7

A/V Sync – 3rd party Provides additional content to linear
broadcast content, e.g. a sign language
service

Synchronizes additional content to
broadcast stream

6.3.7

A/V Sync – Terminal Synchronizes and renders content
received from multiple networks

Support for a single content provider

Support for 3rd party content provider

6.3.7

Cloud Offloading Offers functionalities which cannot run
directly on devices, e.g. due to
performance or cost reasons, on a
network server.

6.3.13

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 25

WP5 - Module Description Chapter

Recommendation
Engine

A module enabling context-aware
personalised content recommendations
for single users and groups of users

It supports two filtering types (metadata-
based filtering and collaborative filtering)

Content recommendations can be given
for both source-domains, the broadcast
and the broadband domain

6.3.2

Preference Profile
Service

Part of the recommendation engine 6.3.2

Personalization
Engine

Aggregates single user profiles

Applies logic to calculate group profile

Combines presence information and
content that is being consumed and turns
this into ratings / preferences

6.3.1

Notification Service A module enabling subscription to events,
and providing notification of events to all
subscribers

Events in the HBB-NEXT context are to be
understood as: a channel change, a person
entering/leaving the room, a 2nd screen
device being in sync with a TV/STB, etc

6.3.3

Multi Modal
Interface

 6.3.6

EPG metadata
repository

Provides program and content
information for broadcast and broadband
networks.

6.3.11

WP6 - Module Description Chapter

Terminal HBB-NEXT enabled television set or STB 6.3.14

HBB-NEXT
Application

HBB-NEXT applications will be described in
the upcoming versions of D6.3

D6.3.x

Device Capability
Provider

Provides capabilities of end user devices,
like supported A/V codecs, resolutions
number of video codecs and renderers

6.3.10

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 26

Other Description Chapter

Mobile Device Personal devices like tablet PCs, smart
phones, etc.

6.3.14

Terminal Trust
Management

Manages access to sensitive terminal API
by applications

6.3.12

Terminal Identity
Management

Terminal based user and second device
management

6.3.12

Service Discovery Broadcast Services Discovery

IP Services Discovery

6.3.9

6.2. Physical Distribution

This chapter will describe the physical architecture of the HBB-NEXT framework in the next

version of this document. A first draft can be seen in Figure 3.

The physical realisation of individual components is contained in the detailed module

description in the next chapters.

6.3. Detailed Module Descriptions

The following chapters will focus particularly on the functionality of all identified HBB-NEXT

modules will be described, including mostly a description of their architecture and

interfaces.

6.3.1. Personalization Engine

The Personalization Engine (PE) component is responsible for providing personalized group

profiles on the base of single user profiles. The component shall retrieve single user profiles

and use the parameters of single users to provide group parameters. In its simplest form

(and on the implementation roadmap) the PE will retrieve the ages of all users that are

active in a context and provide the average age and standard deviation (or its square

empirical variance). The PE should be capable of being extended in any form with more

complex algorithms (e.g. movie categories abstraction to higher category).

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 27

6.3.1.1. Interfaces, Protocolsand API

The interface of the PE module uses a REST API to provide the information to other

components. The REST interface shall provide the following functions (summarized from

tech. requirements):

 Retrieve and modify single user profile in the system (via PM)

 Get and set group profile for the active context

The REST API concept will be described in the following. It shall be noted that it is subject to

changes due to the parallel work in WP5.

Root URL: https://pe.example.org/api/v1/

 Transport: https (enforced), http for debugging purposes

 Base URL: pe.domain.tld (subdomain pm. assumed to point to PM module)

 Level /api/: As a front-end may be available on the main URL, the level ‘api’ is

added

 Level /v1/: The version is added to the URL. The latest version can be available

under the URL without version string (link)

The API itself provides a list of resources under the /resources link. The planned resource is

 /context

Resources (contexts) have unique IDs that can be retrieved from the IdM, e.g.,

/context/AxfG42. The context can be provided based on a user, a set of users, or based on a

device, or set of devices respectively.

Selective profile parameter values can be queried using the attribute name in the form

/user/a1b2c3?q=age.

Unless specified otherwise, the default content is used in the body. The requested resource

might specify the content type in case multiple content types are offered (e.g. /user.json or

/user.xml).

The method GET is used to retrieve an object.

The method PUT is used to modify (update) an object.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 28

The PE is a stateless component that uses data from both the IdM and PE and provides an

answer “on the fly”. For more complex operations, it may be extended with a database and

stateful logic to pre-calculate context data.

6.3.2. Recommendation Engine

The recommendation engine module provides functionality to Applications and Services to

receive context-aware personalized multi-user and multi-device-based content

recommendations. For optimizing recommendations, context information from users in a

group and the collection of user profile information will be used for content filtering, as well

as collaborative content filtering algorithms, all of them serving as input for the service

personalization processes. The recommendation engine will enable content

recommendations coming from both the broadcast and broadband domain by building on

algorithms for merging the HBB metadata. For providing this functionality a metadata

merging function will be implemented.

6.3.2.1. Module Internal Structure and Interfaces

Figure 7: Internal classes used by the Recommendation Engine

The recommendation module consists of several sub-modules, which all of them are used

by the Recommendation Engine implementation to calculate and process content

recommendations – also taking into account context and characteristics (see Figure 7).

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 29

6.3.2.2. Module External Interfaces and APIs

The interfaces providing recommendations based on the hybrid implementation of content-

based-filtering and collaborative-filtering algorithms are externally visible, as depicted in

Figure 8. They can be accessed by Applications and Services through the Recommendation

Engine and the Preference Service.

Figure 8: Interfaces provided by the Recommendation Engine

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 30

Recommendation Engine:

This interface defines the Recommendation Engine API. A Recommendation Engine

recommends items based on individual and/or group preferences as well as the group

context. It offers the following methods:

RecommendationList getSimilarItems(int partyId,
 String foreignItemId,
 RecommendationContext context,
 int maxSize)

Get items that are in some way similar to the given item.

RecommendationList getRecommendations(int partyId,
 Set<String> foreignUserIds,
 RecommendationContext context,
 int maxSize)

Get recommendations for a set of users (could be one) based on their (combined)
preferences. The recommendation context contains additional constraints that
must be taken into account while calculating the recommendations.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 31

Preference Service:

This interface defines the Preference Service API. The Preference Service enables the

storage and retrieval of individual and group preferences (storage in both ways, explicit by a

user and/or implicit by the system). It offers the following methods:

Boolean addItemCharacteristics(int partyId, String foreignItemId,
List<Characteristic> characteristics)
Add Characteristics to the item that is identified by the given foreignId.

Boolean createItemAliases(int partyId, Set<Alias> itemAliases)
Create item aliases that refer to items that already exists at another party.

Boolean createItems(int partyId, Set<String> foreignItemIds)
Create new items that are identified by the party with the given foreignIds.

Boolean createUserAliases(int partyId, Set<Alias> userAliases)
Create user aliases that refer to users that already exists at another party.

Boolean createUsers(int partyId, Set<String> foreignUserIds)
Create new users that are identified by the party with the given foreignIds.

Boolean deleteItemAliases(int partyId, Set<Alias> itemAliases)
Delete item aliases.

Boolean deleteItems(int partyId, Set<String> foreignItemIds)
Delete the items that are identified by the party with the given foreignIds.

Boolean deleteUserAliases(int partyId, Set<Alias> userAliases)
Delete user aliases.

Boolean deleteUsers(int partyId, Set<String> foreignUserIds)
Delete the users that are identified by the party with the given foreignIds.

Set<ItemRating> getItemRatings(int partyId,

List<Pair<String,String>> userItemPairs)
Get the ratings provided by the given users for the specified items.

Boolean rateItems(int partyIds, List<ItemRating> ratings)
Rates content items with the given parameters.

Boolean rateRecommendationList(int partyId, long listId,
 double utility, double confidence)
Rate a list of recommended items to i.e learn preferred list properties.

Boolean removeItemCharacteristics(int partyId, String foreignItemId,
 List<Characteristic> characteristics)
Delete Characteristics from the item that is identified by the given foreignId.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 32

6.3.2.3. Hardware and Software Components

Hardware components:

Since the implementation of the Recommendation Engine will be purely Java-based, the

Recommendation Engine as such will be deployed on a standard off-the-shelf PC.

Software components:

The Java-based implementation will be installed on a PC and accessed through a Web

Service Interface by an application running on a demo-STB.

6.3.2.4. Prototype Description

The Recommendation Engine prototype will realize the following scene from one of the

Usage Scenarios, which is:

“One person is browsing through her personalized EPG. As a second person from the same

household enters the room and takes seat on the couch, the system detects the person, and

the EPG updates itself according to the ad-hoc group profile built by the mix of the two

users’ profiles being present.”

6.3.2.5. Interaction and Integration with other Modules

Basic features of the User Identification module (WP3) will be used by this prototype in

order to realize the automatic update of the EPG / the recommendations given to the two

users.

6.3.3. Notification Service

The notification service will be based on a message queue server to send and subscribe for

events of the HBB-NEXT framework. The component will be further described in the next

version of this document.

6.3.4. Identity Management

The Identity Management (IdM) component is responsible for managing the information

about users, devices and their respective relation. This includes, but is not limited to, user

identifiers, links to user profiles, authorization and authentication data and device IDs.

The component shall manage all user identities with related information.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 33

The component shall manage all device identities with related information.

The component shall manage relations between users, between devices, between users and

their devices, and between devices and their active users.

It stores data mainly for the multi-modal interface (identification vectors, information about

users on the device, etc.) and the security manager (authentication data for identity

provider functionality). Identification vectors contain the parameterized information of

modalities. They will be exchanged with the multi-modal interface1. The API provides means

to store the vectors like for any other parameter.

The identity manager is tightly coupled with the profile management, which contains the

user profile and service related information (see section 6.3.5).

6.3.4.1. Interfaces, Protocols and API

The interface of the IdM module uses a REST API to provide the information to other

components.

The REST interface shall provide the following functions (summarized from tech.

requirements):

 Retrieve, add, modify, delete user in the system

 Add, modify, delete user from a context

 Retrieve users active in a context (at the present moment)

 Retrieve users relevant for a context (usually active there)

 Retrieve devices active in a context (at the present moment)

 Retrieve devices relevant for a context (usually active there)

 Provide multi-modal vectors for users relevant for a context (single modes, all

modes)

 Fulfil requirements of security management (e.g. credentials)

1
 Note: The user interaction interfaces and development (front-end, dialogs, capturing, etc.) is not provided by

the identity management module.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 34

 Retrieve, add, modify, delete device in the system

 Add, modify, delete device from a context

 Attach, detach user to device

 Retrieve devices of a user

 Retrieve, add, modify, delete roles of a user

 Retrieve, add, modify, delete relation between a user (relation, value)

The REST API concept will be described in the following. It shall be noted that it is subject to
changes due to the parallel work in WP3.

Root URL: https://idm.example.org/api/v1/

 Transport: https (enforced), http for debugging purposes

 Base URL: idm.domain.tld (subdomain idm. assumed to point to IdM module)

 Level /api/: As a front-end may be available on the main URL, the level ‘api’ is

added

 Level /v1/: The version is added to the URL. The latest version can be available

under the URL without version string (link)

The API itself is provides a list of resources under the /resources link.

The planned resources are

 /user/

 /device/

 /context/

Resources (users, devices, contexts) have unique IDs that can be queried, e.g.,

/users/a1b2c3 or /device/314159. The response body will contain the complete data set in

this case.

Selective data parameter values can be queried using the attribute name in the form

/users/a1b2c3?q=email or /users/a1b2c3?q=firstName+lastName or /device/?user=a1b2c3.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 35

Data can be searched using the search string for the value in the form

/users/?q=name&s=Jon.

Unless specified otherwise, the default content is used in the body. The requested resource

might specify the content type in case multiple content types are offered (e.g. /user.json or

/user.xml).

The method GET is used to retrieve an object.

The method POST is used to create an object.

The method PUT is used to modify (update) an object.

The method DELETE is used to delete an object.

The planned internal architecture of the module is shown in Figure 9.

Database

Logic

APIs Front-end

Back-end

API

Module

REST Web TV

?

?

Figure 9: Internal module architecture

The API will communicate with other modules via REST. The same API can be used by front-

end components (e.g. web site, menu and dialogs on the TV screen) to provide the module

functionality to the user. Front-end components are not part of the planned

implementation.

The API will access the back-end database; programming logic will connect database and

API. The database may be queried directly or through an API it provides.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 36

6.3.5. Profile Management

The Profile Management (PM) component is responsible for managing user and service

profiles. Profiles contain services and their respective preferences.

The component shall manage all user profiles.

The component should manage service profiles.

The profile management contains the user profile and service related information.

6.3.5.1. Interfaces, Protocols and API

The interface of the PM module uses a REST API to provide the information to other

components.

The REST interface shall provide the following functions (summarized from tech.

requirements):

 Retrieve, add, modify, delete profile in the system

 Fulfil requirements of security management (e.g. privacy)

The REST API concept will be described in the following. It shall be noted that it is subject to

changes due to the parallel work in WP3.

Root URL: https://pm.example.org/api/v1/

 Transport: https (enforced), http for debugging purposes

 Base URL: pm.domain.tld (subdomain pm. assumed to point to PM module)

 Level /api/: As a front-end may be available on the main URL, the level ‘api’ is

added

 Level /v1/: The version is added to the URL. The latest version can be available

under the URL without version string (link)

The API itself is provides a list of resources under the /resources link.

The planned resource is:

 /user/

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 37

Resources (user profiles) have unique IDs that can be queried, e.g., /user/a1b2c3. The

response body will contain the complete data set in this case.

Selective data parameter values can be queried using the attribute name in the form

/user/a1b2c3?q=services.

Data can be searched using the search string for the value in the form

/user/?q=serviceid&s=98765.

Unless specified otherwise, the default content is used in the body. The requested resource

might specify the content type in case multiple content types are offered (e.g. /user.json or

/user.xml).

The method GET is used to retrieve an object.

The method POST is used to create an object.

The method PUT is used to modify (update) an object.

The method DELETE is used to delete an object.

The architectural concept of the PM module is the same as for the IdM module.

6.3.6. Multi-Modal User Interface

The multimodal interface is responsible for seamless user recognition and authentication

using modalities (voice, face detection, etc.). Beside this the multimodal interface serves for

commands using gestures or voice to control the STB. The modalities used in the system are

coming from proposed scenarios and functional requirements.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 38

6.3.6.1. Module Internal Structure

The architecture is depicted in following Figure 10:

Figure 10: Architecture for Multimodal Interface

The architecture should be layered as there are following requirements:

The STB should be able to identify local users (users who are known to the system, e.g. at

home). Therefore, the STB should be able to act without any internet connectivity.

The recognition in local area should be possible with current means, but worldwide

seamless user identification is not possible now. Therefore, interconnecting the STB to local

(City/Area) level for seamless identification has been suggested. Any other identification

type would be done using some additional information for reliable user identification.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 39

6.3.6.2. Module External Interfaces and APIs

The APIs are based on requirements and are optimized for bandwidth requirements.

Detailed interface are:

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 40

Boolean MMIGetVoiceActivity (intDetectionTimePeriod)
Return the result of voice activity detection in the defined interval.

Boolean MMIInitVoiceActivityDetector (ListOfParameters)
Initiate the routine for voice activity detection with starting values of parameters.
False if initialization errors.

MMIStopVoiceActivityDetector ()
Stop the routine for voice activity detection.

Boolean MMIInitVoiceUserIdentification (ListOfParameters)
Initiate the routine for speaker identification with starting values of parameters.
False if initialization errors.

MMIStopVoiceUserIdentification ()
Stop the routine for speaker identification.

Boolean MMIGetVoiceUserIdentity (intDetectionTimePeriod,
intUserIndex, float confidence)
Return index of the last speaker with the estimated confidence. False if no
identification within DetectionTimePeriod.

Boolean MMIGetAllVoiceUserIdentity (intDetectionTimePeriod, int
list UserIndex, float list confidence)
Return the list of indexes of detected speakers within the detection interval with the
estimated confidences. False if no identification within DetectionTimePeriod.

Boolean MMIRecordNewVoiceUser (intMaxRecordTimePeriod,
intNewUserIndex)
Records and stores a new user within the MaxRecordTimePeriod interval. False if no
voice activity within MaxRecordTimePeriod was detected.

MMIRemoveVoiceUser (intUserIndex)
Remove user defined by UserIndex out of user list.

Boolean MMIVoiceUserPresent (intDetectionTimePeriod, intUserIndex,
float confidence)
Return true if a user defined by UserIndex was active within the detection interval
and its confidence. False if not.

Boolean MMIUnknownVoiceUserPresent(intDetectionTimePeriod, float
confidence)
Return true if an unknown user was active within the detection interval and its
confidence. False if not.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 41

Boolean MMIGetFacePresence (intDetectionTimePeriod)
Return the result of face presence detection in the defined interval.

Boolean MMIInitFaceActivityDetector (ListOfParameters)
Initiate the routine for face presence detection with starting values of parameters.
False if initialization errors.

MMIStopFacePresenceDetector ()
Stop the routine for face presence detection.

Boolean MMIInitFaceUserIdentification (ListOfParameters)
Initiate the routine for user identification with starting values of parameters. False if
initialization errors.

MMIStopFaceUserIdentification ()
Stop the routine for user identification.

Boolean MMIGetFaceUserIdentity (intDetectionTimePeriod,
intUserIndex, float confidence)
Return index of the last user with the estimated confidence. False if no identification
within DetectionTimePeriod.

Boolean MMIGetAllFaceUserIdentity (intDetectionTimePeriod, int
list UserIndex, float list confidence)
Return the list of indexes of detected users within the detection interval with the
estimated confidences. False if no identification within DetectionTimePeriod.

Boolean MMIRecordNewFaceUser (intMaxRecordTimePeriod,
intNewUserIndex)
Records and stores a new user within the MaxRecordTimePeriod interval. False if no
face activity within MaxRecordTimePeriod was detected.

MMIRemoveFaceUser (intUserIndex)
Remove user defined by UserIndex out of user list.

Boolean MMIFaceUserPresent (intDetectionTimePeriod, intUserIndex,
float confidence)
Return true if a user defined by UserIndex was active within the detection interval
and its confidence. False if not.

Boolean MMIUnknownFaceUserPresent(intDetectionTimePeriod, float
confidence)
Return true if an unknown user was active within the detection interval and its
confidence. False if not.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 42

6.3.6.3. Hardware and Software Components

The following hardware components are supported by the multi modal interface:

 microphone array

 video camera

 optionally infrared camera

 optionally infrared laser

6.3.7. A/V Content Synchronisation

The synchronisation module as a whole provides the functionality to synchronise two

streams coming from IP and a DVB network. The streams either originate from one

broadcaster, where one broadcast service has been split up into one DVB source and one IP

source or a third party provides additional IP content to a broadcast service. In this case the

IP content is being aligned to the DVB content by the third party.

This module also provides the DVB and IP play-out server which can be used for normal DVB

and IP playout.

6.3.7.1. Module Internal Structure

The synchronisation module consists of three sub-modules: The broadcaster, the 3rd party

and the synchronisation module in the terminal.

The broadcaster and the synchronisation module each provide two interfaces: One for

providing/receiving DVB and one for IP sources.

The 3rd party module provides additional content to the DVB source. To align this it

receives the DVB source and provides the aligned IP source.

The IP and DVB source enter the synchronisation module in the terminal where the two

receivers feed them into the synchroniser which will then feed/control the renderer.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 43

Figure 11: Internal architecture of the A/V content synchronization

6.3.7.2. Module External Interfaces and APIs

The interfaces providing and receiving DVB and IP sources are externally visible. They can be

accessed when offloaded to a cloud.

The DVB source interface delivers a DVB transport stream either modulated for DVB-S, C, or

T, or streamed over IP. HBB-NEXT may define additional signalling required for

synchronizing the DVB source with a corresponding IP source. This will be implemented by

the DVB source interface. The IP source interface delivers a media stream using an adaptive

streaming protocol like MPEG-DASH.

6.3.7.3. Hardware and Software Components

The module will consist of 3 sub modules, located at different places. There is a broadcaster

part which consists of the DVB and IP playout servers described in the subsequent chapters.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 44

The receiver side will be a software component, which will be ported to the prototype STB

used in HBB-NEXT (see chapter 6.3.14).

The architectural design of the 3rd party content provider module will be added in the next

version of this document.

6.3.7.4. DVB Playout Server

The DVB playout server will provide the following features for the project:

 broadcasting linear TV channels to the STB/TV terminal

 source for IP delivered services or service components

 signalling required for synchronization of broadcast services with IP delivered

services or service components at the HBB-NEXT terminals

 application signalling and data transmission over broadcast

The broadcast server of IRT provides the required functionality, except for the signalling of

synchronized IP content. It is planned to implement missing features for the HBB-NEXT

prototype.

The HBB-NEXT framework will include broadcast-related applications, i.e. applications

which are provided by the broadcaster as an extension to the linear TV service. Signalling

and transport of broadcast-related applications are defined by HbbTV 1.0 [1].

6.3.7.5. IP Streaming Server

For the IP video server, the project will mainly target HTTP Adaptive Streaming

technologies, specifically MPEG DASH [8] and Apple’s HTTP Live Streaming [9].

Over the past few years, with the growing popularity of mobile devices such as

smartphones and tablets, this type of streaming technology has taken a large share of the

market, primarily due to the fact that it is, compared with traditional streaming

technologies such as RTP [27], simple, scalable and able to use standard HTTP servers.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 45

One of the main concepts behind the various adaptive streaming protocols is that they split

the original content up in numerous fixed length chunks, each of which is independently

decodable. By sequentially requesting and receiving chunks, a client can recreate and play

out the content. One of the primary advantages of this mechanism is that it allows a server

to make each chunk available in multiple qualities, allowing a client to request the quality

which best matches his available bandwidth and seamlessly switch between different

encodings when the available bandwidth changes.

There are currently a number of competing HTTP Adaptive Streaming protocols in the

market, such as Microsoft Smooth Streaming [30], Adobe HTTP Dynamic Streaming (HDS)

[31], Apple HTTP Live Streaming (HLS) [9], 3GPP AHS [28][29] and MPEG DASH [8]. In this

project, MPEG DASH and Apple HLS have mainly been targeted. The most important reason

for choosing MPEG DASH is that it is part of the HbbTV 1.5 [10] specification. The

motivation for also looking at Apple HLS is that it is currently the most widely supported and

implemented HTTP Adaptive Streaming protocol and the only supported video streaming

protocol on a large share of mobile devices.

The following figure gives an overview of the IP Playout server architecture which will be

used in the HBB-NEXT project.

For the encoder any of a number of available open-source tools might be used, the most

obvious of which are FFMPEG [11] or GStreamer [12].

Figure 12: IP Playout Server architecure

The used Segmenter tool depends on the used HTTP Adaptive Streaming protocol. In case

MPEG DASH [8] is being used, there are currently two main open-source alternatives: A set

of tools developed by the University of Klagenfurt [13] or the MP4Box tool developed by

ParisTech [13].

Encoder Segmenter HTTP Server

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 46

For hosting the segments created by the Segmenter, any HTTP Server might be used, such

as Apache HTTP Server [15] or LigHTTPd [16].

6.3.7.6. Interaction and Integration with other Modules

In case of the terminal not being able to synchronise the two sources this functionality can

be offloaded to the cloud by using the cloud offloading module (see chapter 6.3.13).

6.3.8. Application trust

The Application Trust component is responsible for collecting behavioural information

about the entities2 in the system and for computing a reputation value according to it. This

could be performed with the aim of determining how trustworthy an entity is in order to

carry out a transaction3 with it.

6.3.8.1. Representing Recommendations

Behavioural information comes from direct past experiences or experiences that other

sources have had with a given entity. This information is modelled as recommendations. A

recommendation represents the opinion that an entity has about another entity or service

based on past interactions between them. In other words, a recommendation determines

how an entity rates another entity or a service.

Recommendations will be modelled as a value within a continuous interval [0, 1] in order to

ease the computation and the integration in probabilistic calculus. In this way, a

recommendation will be converted to this format even though it could be given from

different ways by the users, such as a binary value (like, dislike), an integer within a range

(from 0 stars to 5 stars), etc.

2
 Within the context of HBB-Next, the term ‘entity’ for the Application trust module might refer to: a user, an

application offered to the users through the app-store, an application provider/developer, another app-store,
etc.
3
 Within the context of HBB-Next, the term ‘transaction’ for the Application trust module might refer to the

delivery and installation of an application offered to the users through an app-store.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 47

6.3.8.2. Aggregating Recommendations

From the gathered recommendations, the Application Trust module aggregates them in

order to obtain a global reputation value. The internal module in charge of performing this

aggregation is named Reputation Computation Engine [17].

If some of the recommendations do not come from direct experiences, the confidence of

these recommendations should be taken into account [20]. That is, if a recommendation

has been given by other entity, this recommendation is weighted according to the reliability

placed in such an entity.

The Reputation Computation Engine should consider the possible incorrect feedbacks

provided by either malicious users or simply users that by mistake provide wrong rating

values to the relying parties [19]. In this sense, recommendations about the same entity

could be compared between them detecting atypical recommendations.

Since there are multiple ways of aggregating recommendations, the module deploys

different Reputation Computation Engines. Each of these Reputation Computation Engines

implements a different way of aggregating recommendations. At each time, it is selected

just one of the Reputation Computation Engine to obtain the global reputation value of a

service or entity [18]. The selected one depends on the system conditions or other

parameter defined by the system administrator.

One of the ways of aggregating recommendations takes into account the user preferences

[21]. In this way, a customized reputation value will be calculated based on certain

parameters of the users. For this purpose a Preferences Engine module is defined, which

provide to the Reputation Computation Engine the required information about the user

preferences.

6.3.8.3. Providing Feedback

After the service has been provided and the user has an opinion about the service, she is

able to evaluate it to allow the reputation of that service to be updated. A friendly web-

based form will be shown to the users so that she can provide her feedback. This feedback

is considered as a recommendation by the system, which in turn will be taken into account

for computing future reputation values.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 48

The recommendations are therefore stored in a database to be accessible for the following

aggregation process.

6.3.8.4. Proposed Architecture

The components of the Application Trust component are described in the following:

Figure 13: Application Trust, General Architecture Overview

 Current Reputation Computation Engine: This module is in charge of aggregating

recommendations in order to get a global reputation value. It requests the

Recommendations Manager module for getting the recommendations together

with their weights. This module is the one active at the moment.

 Reputation Computation Engine n: Each of these modules represents an inactive

Reputation Computation Engine. It becomes the Current Reputation Computation

Engine when certain conditions happen in the system, directed by the System

Condition Meter.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 49

 Preferences Engine: This module provides to the Reputation Computation Engine

the required information to compute a customized recommendation. It is worth

mentioning that not all of the Reputation Computation Engines support user

preferences.

 Recommendation Manager: Stores and manages the recommendations which the

Reputation Computation Engine uses in order to obtain a reputation value.

 System Condition Meter: This module measures the system conditions and other

parameters in order to select the most appropriate Reputation Computation

Engine at each moment.

 HTTP API: This module provides a service for other modules to request reputation

values associated to a service or to another entity.

 Web-based API: This API renders and shows reputation information to the users

in a friendly way. It is also in charge of collecting user feedback and making use of

the Recommendation Manager to store them.

6.3.8.5. Functionality

Interfaces

The module presents two main interfaces allowing the rest of entities and users to have

access to its functionality. These two interfaces, as shown next, are: HTTP interface and

User web-based interface.

HTTP Interface

This module presents an internal HTTP interface component acting as a service for the rest

of the modules of the architecture and allowing performing reputation request. To this end,

the component receives <ReputationRequest> messages over HTTP specifying

information about the entity or service whose reputation information is desired. This

message optionally includes the preferences of the user who wants to use the service in

order to provide a customized reputation as previously commented.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 50

A <ReputationRequest> message is sent as an answer to the previous message

indicating the reputation once aggregated by the Reputation Computation Engine. Likewise

it is done with the recommendations, the value of the reputation is specified as a value

within a continuous interval [0, 1].

User Web-Based Interface

A web Interface module is defined to render the information which needs to be shown to

the users after a reputation value is calculated. This module is also in charge of showing the

web form to the user in order for her to provide the feedback.

This module presents the information in a friendly way to enable accessibility capabilities

into the system.

6.3.9. Application, TV Apps Management, Service Discovery

This chapter will describe modules for application hosting, TV apps management and

service discovery. However, this version of the system architecture is preliminary and

focuses on developments for milestone 6. Therefore this chapter will not be included until

the next version of this document.

6.3.10. Multi-Screen Support, Device Monitoring, Device Capabilities

This chapter will describe modules for providing required information of devices for

enabling multiscreen features. However, this version of the system architecture is

preliminary and focuses on developments for milestone 6. Therefore this chapter will not

be included until the next version of this document.

6.3.11. EPG metadata repository

The metadata repository component is a service that provides EPG information for

broadcast and broadband services ("hybrid metadata"). The module will receive input in

different formats, standard and proprietary formats.

The details of this component are not yet defined. The main “consumer“ of the repository

will be the recommendation engine. A potential candidate for the format is TV-Anytime, as

it supports both broadcast and broadband A/V content.

For milestone 6 a predefined static set of metadata will be used which contains broadcast

and YouTube [34] content.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 51

6.3.11.1. Interaction and Integration with other Modules

The metadata will provide EPG data to the recommendation engine.

6.3.12. Terminal Identity and Trust Management

The terminal services for user-, trust- and device (second screen)-management provide the

necessary terminal side functionalities for personalization and communication with

companion devices.

The terminal user management module allows the user to login/-out by using the identity of

a network identity provider. The function of the identity provider in HBB-NEXT is handled by

the security manager. Applications can request the active users of the terminal by a

terminal API.

The device management module organises the link connections of personal user devices

and is also closely related to the identity management module.

In difference to the identity management module described in chapter 6.3.3, which is

service provider/operator based, this module is a terminal service targeting HBB markets

where the user does not have a contract with a single service provider (network operator).

The terminal trust management module is contrary to the application trust module

responsible for broadcast related application trust. As broadcast related applications are

automatically sent when changing the channel this differs from IP and downloadable

content and applications. The terminal trust module is used to enable the user to control

which applications may access sensitive data like his identity

For the next development cycle of HBB-NEXT it is planned to properly align these modules

with the identity management module.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 52

6.3.13. Cloud Offloading and Media Adaptation

Figure 14: High level Architecture of the HBB-NEXT Cloud Offloading service

The high level architecture for cloud-offloading is shown in Figure 14. The architecture

builds on top of an IaaS cloud to provide the HBB-NEXT cloud offloading service.

In this section the underlying considerations are discussed while designing a cloud-based

offloading architecture for the HBB-NEXT project. The architecture to implement a scalable

cloud-offloading system that can support multiple client devices and diverse media

processing applications will furthermore be presented. For the implementation GStreamer

[12] for media processing and Openstack IaaS [35] (Infrastructure as a Service) as our

infrastructure cloud platform are being considered. Openstack can be swapped for other

IaaS cloud services such as Amazon's AWS [36]; this interoperability is ensured by choosing

the well-known EC2 [37] cloud API. The suitability of virtual machines for highly processor

intensive tasks may be questionable, but in fact the underlying cloud can simply be

swapped for MaaS (Metal servers as a service) or Amazon AWS high performance cluster

computing services controlled using the standard EC2 IaaS cloud control API.

Compared to a typical web application, which might only entail occasional delivery of HTML

documents and database queries per user, media processing applications are much more

processor intensive on a sustained basis.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 53

Delays introduced while waiting for cloud worker machines to boot up would affect many

more users on average (since each worker machine can only serve a few users and many

more have to be spawned on short notice as compared to a typical web application).

Moreover, a marginally overloaded web server may not immediately be noticed by users in

contrast to an overloaded media server that is unable to serve video at the required frame-

rate. Clearly, architecting scalable media applications in the cloud has different

performance requirements as compared to a web service.

The above discussion also brings forth an important economic factor in system design,

namely, that a commodity cloud server cannot process real-time media streams for too

many users. Clearly, assigning a dedicated server resource (e.g. a GStreamer media

processing pipeline) to one user is not cost-effective, and the web application assumption of

``one user, one isolated session'' cannot be directly applied in cloud media processing

applications.

Fortunately, most users tend to gravitate toward consuming similar content at any given

point of time, as observed in web video popularity studies, which report strong adherence

to the Pareto principle (e.g. the 10% videos attract 90% user requests). The key scalability

driver in the proposed architecture is the detection of duplicate content processing

requests across users and devices which occur due to most users requesting the same

content. The system then groups such client requests to be served from a single media

processing pipeline in order to eliminate duplicate media processing in the cloud.

6.3.13.1. Proposed Architecture

Figure 14 shows the high level architecture of the HBB-NEXT cloud offloading subsystem.

The system is built over an IaaS or MaaS cloud through which worker machines can be

started or stopped on demand by the HBB-NEXT cloud-offloading middleware. The worker

machines are customized with media-processing-specific software such as GStreamer

making them capable of executing any application media processing pipeline specified by a

developer. Further customizations allow fine grained control and monitoring of these

worker machines.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 54

The HBB-NEXT cloud offloading middle-ware comprises of an application and content head-

end, which is the portal for developers and content providers to create, store, and schedule

content-rich applications on the system. For example, a developer may want two video

streams to be mixed for a picture-in-picture functionality. The application to describe this

processing may be described as a GStreamer media processing pipeline and stored in the

application database (app DB) while the content database can be used to store the

associated elementary video streams whose picture-in-picture mixing is desired. This

component is also linked to the trust and reputation framework. The content and

application manager communicates to the web front-end to present the user with

application and content information.

The key controlling component of the system is the task scheduler and request router.

Several optimizations, such as fine-grained process-level computational requirements, are

taken into account while making scheduling and resource allocation decisions in this

component. This component is responsible for routing application processing requests to

appropriate worker machines, detecting duplicate processing requests by clients and

patching these clients to already-running processing tasks, automatically scaling up (or

down) the underlying IaaS/BaaS cloud and monitoring the cloud health to maintain quality

of service.

The client capability and offloading decision component is responsible for identifying

connecting-client capabilities and accordingly offloading tasks to the cloud from the client

device. For example, this component uses the user-agent string from the client's web

browser to ascertain the screen size (hence, video resolution) to target while transcoding

video for the client. Different device profiles and characteristics are continuously stored and

updated in the client caps database to assist with this decision making.

Finally, the web front-end acts as the entry portal to the HBB-NEXT cloud offloading

subsystem and controls aspects such as user authentication and integration with other

WWW services such as social networks. Moreover, this HTTP server might offer HTTP-proxy

functionality for content stream delivery to certain classes of devices. For example, Apple's

HTTP live streaming protocol is implemented over the HTTP protocol and the corresponding

server may be part of the web front-end.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 55

Another function of the web front-end is to enable application control via second screen

devices (e.g. a tablet computer to control a content application being played back on a TV)

using HTTP protocols or their real-time derivatives such as web-sockets.

6.3.13.2. Media Adaptation

Media adaptation is needed to deal with heterogeneity across clients and devices, content,

networks and protocols. A key success indicator of the HBB-NEXT cloud offloading

subsystem will be its ability to support end-device heterogeneity. For example, transcoding

media in the cloud can convert media from one format to another, making it possible for

devices with limited media decoders to receive videos originally offered in an incompatible

video format and transcoded in the cloud. The challenge lies in including the multiple open

standard interfaces that different client devices may employ today. For example, some

mobile devices are only able to decode video streams presented in specific codecs: Apple

devices such as iPads and iPhones do not decode WebM [38] encoded video. A cloud-based

media transcoder that converts WebM video into H.264 video [40] will solve this problem.

Moreover, while some users' networks may be capable of delivering high resolution media

other users' may not have access to such high quality networks at all times. This problem

can be addressed by using the cloud to transcode media into a series of resolutions and

then offer these various resolutions to clients. The system's client capability manager will

include intelligence to make the decisions about how such heterogeneous devices can be

served appropriately adapted media from the cloud.

The HBB-NEXT cloud offloading service will include GStreamer-based content detection

capabilities and the automatic setup of media processing pipelines to deal with such

heterogeneous content. Moreover, it will include a HTTP proxy that converts media into

browser-friendly formats (such as WebM for Google Chrome browser [39]).

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 56

6.3.14. HBB-NEXT Terminal Devices

The HBB-Next terminal device is a major component of the HBB-NEXT system architecture

as shown in Figure 6 (see chapter 6.1) and acts as the interface between the HBB-NEXT

network services/applications and the end-user. Therefore, the HBB-NEXT terminal must be

capable of presenting various types of media data, of running interactive and downloadable

applications and of receiving input from the end-user. The detailed requirements for such a

device are defined in chapter 4.3 of this document.

In HBB-NEXT, two general types of terminal device are defined:

 HBB-NEXT terminal (acting as the primary device)

 Second screen device

The primary HBB-NEXT terminal is the one which is connected to the ‘big’ TV screen. Typical

HBB-NEXT terminal devices are TV sets with integrated digital TV decoders, Set-top-boxes

and Personal Computers. They have to be compliant to the HbbTV standard [1] offering a

basic framework for hybrid broadcast and broadband services. Today, such devices are

publicly available and implement state-of-the-art technology. HBB-NEXT is extending this

framework.

Some modules like the AV content synchronization need to be implemented on the HBB-

NEXT terminal. Figure 15 shows the principle software architecture of the terminal, based

on the prototype box from TARA Systems.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 57

Figure 15: STB software architecture

The second screen device is typically a mobile device such as a smartphone or a pad

compute but it can be also any other device which implements the required features. It is

connected via the home network or the Internet to a primary device. The content shown on

the primary device can be shown on the secondary screen as well, but possibly with

modified attributes. For example, the second screen device can be used to present the

content shown on the primary device with a different audio language or with additional

subtitle information. So, it is easier for impaired people to join the viewing experience in a

group and become part of the collective viewing experience. Moreover, a primary device

can stream content to one or more second screen devices.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 58

6.3.15. Security Manager

The Security Manager (SM) component is responsible to manage multi-factor

authentication, authorization, and policy enforcement for “multifactor levels” and for

profile data access control.

The component shall handle authentication, i.e. it acts as an identity provider towards the

STB. The IdM shall act as back-end for the authorization process.

It shall provide means to manage and verify tokens.

The component shall handle policies. It shall provide means to manage and enforce policies.

Security Manager

Keys&Certificates

Database

Multi-Factor

Authentication

module

Event logging module

(archive)

PKI authentication

module

Policy and

Administration

module

Authorization module

(Token manager)

System

Gateway

Terminal

Gateway

Application

Gateway

API module

Figure 16: Internal architecture of the security manager

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 59

The Security Manager will consist of several modules:

Authorization module (Token manager) – will evaluate if the terminal has access to the

HBB Network as role-based access controller. This module will either grant or deny access

to the HBB Network.

Multi-Factor Authentication (MFA) module – will be responsible for managing multi-factor

authentication processes, depending on required level of security during User/Group is

accessing the application/s.

MFA will perform a user identification process to create a list of "best matches" and then

perform a series of verification processes to determine a conclusive match. Number of

necessary verification processes depends on the required authentication level for accessing

the service/application/data. HBB-Next project supposes to have several required levels of

authentication to verify users before accessing the service with required “level of security”.

(personal EPG – low level is required; instant messaging – middle level is required, e-

banking – high level is required)

Policy and Administration module – policy enforcer for MFA module and point of security

rules mapping and configuration.

PKI authentication module – will be intended to manage Public Key Infrastructure (PKI)

tasks within HBB-Next domain, acting as certificate management system within HBB-Next

domain.

Event logging module (archive) – event logger for all activities performed by SM.

Keys&Certificates Database – will hold sensitive cryptographic key information and single

public key certificates.

API module – secure interface for communication among HBB-NEXT entities consisting of

three different sub-modules, the so called gateways.

 System Gateway – an interface towards HBB-Next core modules (Identity

Management, Profile Manager, Trust&Reputation)

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 60

 Application Gateway – an interface towards HBB-Next application, which will be

used only for communicating with Application Servers and not to applications

hosted on the terminal. Note – necessity of this interface will be a part of further

detailed design analysis within WP3.

 Terminal Gateway –an interface towards Terminal/ End-user device. This

Gateway is needed because of different rules for external devices/terminals

might be used than to all servers within Core and Application layers.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 61

7. Conclusion and Outlook

This document describes the initial system architecture of HBB-NEXT. The modules which

form the architecture have been identified and their principal interfaces. For some modules

it is still under discussion how they fit in the architecture depending on the scenarios and

business models behind, e.g. for user identity management. The documentation of the

components is preliminary and reflects the state of development, i.e. some have already a

defined API.

During the project two major updates of this document are planned, namely D6.1.2 and

D6.1.3. They will be used to document the development of the HBB-NEXT framework,

completing the module description with APIs, describing the interaction of interconnected

modules, and a more detailed set of technical requirements.

One of the key objectives of HBB-NEXT is to contribute to standardization bodies, currently

planned are the ETSI MCD Converged Multi-screen Service specification and the next

release of the HbbTV specification. The intention is to use the next revision of this

document as a basis for contributions on technical requirements, protocols and APIs

towards the targeted standardization bodies.

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 62

8. References

[1] Hybrid Broadcast Broadband TV (HbbTV): ETSI TS 102 796 V1.1.1 (2010-06)

[2] Web-based Protocol and Framework for Remote User Interface on UPnP™ Networks

and the Internet (CE-HTML): CEA-2014-A (2007-07). http://www.ce.org/Standards/

[3] HTML5. http://dev.w3.org/html5/spec/

[4] HBB-NEXT deliverable 2.4: “Description of selected business models”

http://www.hbb-next.eu/documents/HBB-NEXT_D2%204.pdf

[5] HBB-NEXT deliverable 2.2: “System, Service and User Requirements”

http://www.hbb-next.eu/documents/HBB-NEXT_D2.2.pdf

[6] HBB-NEXT deliverable 7.2: “Dissemination and Standardization Strategy”

http://www.hbb-next.eu/documents/HBB-NEXT_D7%202.pdf

[7] Key words for use in RFCs to Indicate Requirement Levels: IETF RFC 2119

[8] Dynamic adaptive streaming over HTTP (DASH): ISO/IEC DIS 23009-1:2012

[9] Apple’s HTTP Live Streaming: https://developer.apple.com/resources/http-

streaming/

[10] HbbTV 1.5: http://www.hbbtv.org/pages/about_hbbtv/HbbTV-specification-1-5.pdf

[11] FFMPEG: http://ffmpeg.org/

[12] GStreamer: http://gstreamer.freedesktop.org/

[13] University of Klagenfurt: http://www-itec.uni-klu.ac.at/dash/

[14] MP4box tools: http://gpac.wp.mines-telecom.fr/

[15] Apache HTTP Server: http://httpd.apache.org/

[16] LigHTTPd: http://www.lighttpd.net/

[17] A. Josang, R. Ismail, C. Boyd, A survey of trust and reputation systems for online

service provision. Decis. Support Syst., 2007.

http://www.ce.org/Standards/
http://dev.w3.org/html5/spec/
http://www.hbb-next.eu/documents/HBB-NEXT_D2%204.pdf
http://www.hbb-next.eu/documents/HBB-NEXT_D2.2.pdf
http://www.hbb-next.eu/documents/HBB-NEXT_D7%202.pdf
https://developer.apple.com/resources/http-streaming/
https://developer.apple.com/resources/http-streaming/
http://www.hbbtv.org/pages/about_hbbtv/HbbTV-specification-1-5.pdf
http://ffmpeg.org/
http://www-itec.uni-klu.ac.at/dash/
http://gpac.wp.mines-telecom.fr/
http://httpd.apache.org/
http://www.lighttpd.net/

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 63

[18] Félix Gómez Mármol, Marcus Q. Kuhnen, and Gregorio Martínez Pérez. Enhancing

OpenID through a Reputation Framework. In Autonomic and Trusted Computing,

LNCS 6906, pages 1–18. 8th International Conference, ATC 2011, Springer, sep 2011.

[19] F. Gómez Mármol, G. Martínez Pérez, Security threats scenarios in trust and

reputation models for distributed systems, Elsevier Computers & Security 28 (7)

(2009) 545–556.

[20] S. Songsiri, MTrust: a reputation-based trust model for a mobile agent system,

Autonomic and Trusted Computing. No. 4158 in LNCS. Third International

Conference, ATC 2006, Springer, Wuhan, China, Sep. 2006, pp. 374–385

[21] Y. Wang and J. Vassileva, “A Review on Trust and Reputation for Web Service

Selection,” Proc. 1st Int’l. Wksp. Trust and Reputation Management in Massively

Distributed Computing Systems, Toronto, Canada, June 2007.

[22] Roy Thomas Fielding: “Architectural Styles and the Design of Network-based

Software Architectures”, Dissertation at University of California, Irvine, 2000.

[23] UML Resource Page: http://www.uml.org/

[24] Cross-Origin Resource Sharing: http://www.w3.org/TR/cors/

[25] HTML 5 Web Messaging: http://www.w3.org/TR/webmessaging/

[26] HTML 5 Web Sockets: http://www.w3.org/TR/websockets/

[27] RTP: A Transport Protocol for Real-Time Applications:

http://www.ietf.org/rfc/rfc3550.txt

[28] 3GPP TS 26.234 V9.3.0 (2010-06), Transparent end-to-end Packet-switched

Streaming Service (PSS) Protocols and codecs (Release 9)

[29] 3GPP TS 26.244 V9.2.0 (2010-06), Transparent end-to-end packet switched

streaming service (PSS), 3GPP file format (3GP) (Release 9)

[30] Microsoft Smooth Streaming: http://www.iis.net/download/SmoothStreaming

[31] Adobe HTTP Dynamic Streaming:

http://www.adobe.com/products/hds-dynamic-streaming.html

http://www.uml.org/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/websockets/
http://www.ietf.org/rfc/rfc3550.txt
http://www.iis.net/download/SmoothStreaming
http://www.adobe.com/products/hds-dynamic-streaming.html

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 64

[32] "Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP) Specification

1.0.3": ETSI ES 201 812 V1.1.1 (12 2003)

[33] http://opentv.com/

[34] http://www.youtube.com

[35] http://www.openstack.org/

[36] http://aws.amazon.com/

[37] http://aws.amazon.com/ec2

[38] http://www.webmproject.org/

[39] http://www.google.de/chrome/

[40] ITU-T Recommendation H.264 / ISO/IEC 14496-10:2005: “Information technology –

Coding of audio-visual objects- Part 10: Advanced Video Coding”.

http://opentv.com/
http://www.youtube.com/
http://www.openstack.org/
http://aws.amazon.com/ec2
http://www.webmproject.org/
http://www.google.de/chrome/

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 65

9. Abbrevations

9.1. General abbrevations

3GPP 3rd Generation Partnership Project

AHS 3GPP Adaptive HTTP Streaming

API Application Programming Interface

AWS Amazon Web Services

BaaS Business as a Service

CE-HTML HTML for Consumer Equipment, formally known as CEA-2014A [2]

CORS Cross Origin Resource Sharing

DASH MPEG Dynamic Adaptive Streaming over HTTP [8]

DVB The Digital Video Broadcasting Project

DTS Decoding Time Stamp

EC2 Amazon Elastic Compute Cloud

EPG Electronic Programme Guide

ETSI European Telecommunications Standards Institute

IaaS Infrastructure as a Service

IETF Internet Engineering Task Force

IP Internet Protocol

HBB Hybrid Broadcast Broadband (generic term)

HbbTV “Hybrid Broadcast Broadband Television” specification [1]

HDS Adobe HTTP Dynamic Streaming

HLS Apple HTTP Live Streaming

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

MaaS Management as a Service

MCD ETSI Media Content Distribution

MHP DVB Multimedia Home Platform

MPEG Motion Picture Expert Group

HBB-NEXT I D6.1.1 Initial Version of the HBB-NEXT System
Architecture

 Page 66

MSS Microsoft Smooth Streaming

PCR Program Clock Reference

PTS Presentation Time Stamp

REST Representational State Transfer

RTP Realtime Transport Protocol

SaaS Software as a Service

SOAP Simple Object Access Protocol

STB Set top box

SVG Scalable Vector Graphic

UML Unified Modelling Language

URL Uniform Resource Locator

WebM audio video codec

9.2. HBB-NEXT abbreviations

IdM Identity Management

PE Personalization Engine

PM Profile Management

SM Security Manager

WP Work Package

